Testing Gaugino Mass Unification at the LHC

Brent D. Nelson Northeastern University

with B. Altunkaynak, M. Holmes and P. Grajek, G. Kane, P. Kumar

Brookhaven Forum 2008

November 7, 2008

• LHC era is here – what should theorists be doing now?

- LHC era is here what should theorists be doing now?
- Assume SUSY is established early on by standard methods what next?
- We will need to master the "inverse problem" not our direct focus here
 Arkani-Hamed et al., JHEP 0608 (2006) 070
- More important: want to extract broad characteristics of the underlying theory

- LHC era is here what should theorists be doing now?
- Assume SUSY is established early on by standard methods what next?
- We will need to master the "inverse problem" not our direct focus here

 Arkani-Hamed et al., JHEP 0608 (2006) 070
- More important: want to extract broad characteristics of the underlying theory
 - \star Measurement of $m_{\tilde{N}_2}$ $m_{\tilde{N}_1}$
 - \star Measurement of $m_{\tilde{N}_2}$ itself
 - \star Extraction of the values of M_2 , μ , $\tan \beta$,...
 - \star Evidence of how the μ -term was generated in the first place

- LHC era is here what should theorists be doing now?
- Assume SUSY is established early on by standard methods what next?
- We will need to master the "inverse problem" not our direct focus here
 Arkani-Hamed et al., JHEP 0608 (2006) 070
- More important: want to extract broad characteristics of the underlying theory
 - \star Measurement of $m_{\tilde{N}_2}$ $m_{\tilde{N}_1}$
 - \star Measurement of $m_{\tilde{N}_2}$ itself
 - \star Extraction of the values of M_2 , μ , $\tan \beta$,...
 - \star Evidence of how the μ -term was generated in the first place
- Most important thing to a theorist: gaugino mass unification
 Binetruy, Kane, Lykken and BDN, J. Phys. G32 (2006) 129
- Want to know this independent of everything else that's going on with the supersymmetry breaking Lagrangian (if possible)
- Big job: need a tractable and concrete starting point

Mirage pattern of gaugino masses – a one-parameter family:

$$M_1: M_2: M_3 \simeq (1+0.66\alpha): (2+0.2\alpha): (6-1.8\alpha)$$

- A logical first step
 - * Easy to understand and visualize
 - \star Interpolates between mSUGRA ($\alpha = 0$) and AMSB limit ($\alpha \to \infty$)
 - Motivated by a variety of constructions, including string theory (heterotic and Type II) as well as "deflected" AMSB
 - ★ Disadvantage: Only one-parameter family of models ⇒ not fully general
- All values of α correspond to a unified pattern the only issue is at which energy scale they unify

 Choi & Nilles, JHEP 0704 (2007) 006
 - \star When $\alpha=0$ gaugino masses unify at $M_{\rm GUT}\simeq 2\times 10^{16}~{
 m GeV}$
 - \star Other α values give effective unification scale elsewhere (hence "mirage")
 - \star Example: $\alpha=2$ gives $M_1\simeq M_2\simeq M_3$ at low-energy scale
 - Scale dependent! Coefficients change with scale (here 1 TeV)

⇒ High scale: universal and anomaly-induced piece to gaugino masses

$$M_a\left(\Lambda_{\mathrm{UV}}\right) = M_a^{\mathrm{univ}}\left(\Lambda_{\mathrm{UV}}\right) + M_a^{\mathrm{anom}}\left(\Lambda_{\mathrm{UV}}\right) = M_u + g_a^2\left(\Lambda_{\mathrm{UV}}\right) \frac{b_a}{16\pi^2} M_g$$

• Gauge couplings continue to unify at the $\Lambda_{\scriptscriptstyle
m UV}=\Lambda_{\scriptscriptstyle
m GUT}$ scale

$$g_1^2\left(\Lambda_{ ext{UV}}
ight) = g_2^2\left(\Lambda_{ ext{UV}}
ight) = g_3^2\left(\Lambda_{ ext{UV}}
ight) = g_{ ext{GUT}}^2 \simeq rac{1}{2}$$

Anomaly piece is proportional to SM beta-function coefficients

$$b_a = -(3C_a - \sum_i C_a^i) \implies \{b_1, b_2, b_3\} = \{\frac{33}{5}, 1, -3\}$$

- If these are going to be competitive you need $M_g \gtrsim 30 M_u$
- ⇒ Now evolve to electroweak scale using one-loop RGEs

$$M_a\left(\Lambda_{\text{EW}}\right) = M_u \left\{ 1 - g_a^2\left(\Lambda_{\text{EW}}\right) \frac{b_a}{8\pi^2} \ln\left(\frac{\Lambda_{\text{UV}}}{\Lambda_{\text{EW}}}\right) \left[1 - \frac{1}{2} \frac{M_g}{M_u \ln\left(\frac{\Lambda_{\text{UV}}}{\Lambda_{\text{EW}}}\right)} \right] \right\}$$

 \Rightarrow Introduce the parameter $lpha = rac{M_g}{M_u \ln(\Lambda_{
m UV}/\Lambda_{
m EW})}$

$$M_a\left(\Lambda_{\rm EW}\right) = M_u \left[1 - \left(1 - \frac{\alpha}{2}\right) g_a^2 \left(\Lambda_{\rm EW}\right) \frac{b_a}{8\pi^2} \ln\left(\frac{\Lambda_{\rm UV}}{\Lambda_{\rm EW}}\right)\right]$$

- Some notable properties of this solution
 - \star If you can engineer $M_q \sim 30 M_u$ then you obtain $\alpha \sim 1$
 - \star When $\alpha = 2$ gaugino masses universal at the electroweak scale
 - \star Take $\Lambda_{\rm EW}=1000~{
 m GeV}$, $\Lambda_{\rm UV}=\Lambda_{\rm GUT}$ and divide through by $M_1\left(\Lambda_{\rm EW}\right)|_{\alpha=0}$

$$M_1: M_2: M_3 = (1.0 + 0.66\alpha): (1.93 + 0.19\alpha): (5.87 - 1.76\alpha)$$

 \Rightarrow Finding the scale of "mirage unification": redefine $\alpha \equiv \frac{M_g}{M_u \ln \left(M_{\rm PL}/M_g \right)}$

$$M_a\left(\Lambda_{\text{EW}}\right) = M_u \left\{ 1 - g_a^2 \left(\Lambda_{\text{EW}}\right) \frac{b_a}{8\pi^2} \left[\ln \left(\frac{\Lambda_{\text{UV}} \left(M_g/M_{\text{PL}}\right)^{\alpha/2}}{\Lambda_{\text{EW}}} \right) \right] \right\}$$

Effective unification scale is now at

$$oldsymbol{\Lambda_{ ext{mir}}} = oldsymbol{\Lambda_{ ext{GUT}}} \left(rac{M_g}{M_{ ext{PL}}}
ight)^{oldsymbol{lpha}/2}$$

- \Rightarrow Our goal is to ask how well we can determine α at the LHC using only actual observations
- Most importantly, can we demonstrate $\alpha \neq 0$?
- Want to do this independent of any particular model
- Not going to assume reconstruction any sparticle masses
- We will assume we know all other inputs for the Monte Carlo comparison to data – unrealistic but this is a first step
- ⇒ Basic idea: use an ensemble of signatures wisely chosen to perform a fit of Monte Carlo to "data"
- We break the problem into a "base model" specified by the parameters

$$\left\{\begin{array}{c} \tan \beta, \ m_{H_u}^2, \ m_{H_d}^2 \\ M_3, \ A_t, \ A_b, \ A_\tau \\ m_{Q_{1,2}}, \ m_{U_{1,2}}, \ m_{D_{1,2}}, \ m_{L_{1,2}}, \ m_{E_{1,2}} \\ m_{Q_3}, \ m_{U_3}, \ m_{D_3}, \ m_{L_3}, \ m_{E_3} \end{array}\right\}$$

and a value of α which determines the three gaugino masses (with overall scale set by M_3)

- Given a model we construct a **model line** by varying α while keeping the base model fixed
- For each point we generate data using PYTHIA + PGS4 and construct our signatures
- Analysis is performed using a modification of ROOT generated by Baris
 Altunkaynak at Northeastern

http://www.atsweb.neu.edu/ialtunkaynak/heptools.html#parvicursor

- How do we determine the value of α ? We compare Monte Carlo predictions for our signatures against the "data"
- For example, we can ask whether we can distinguish the prediction for the case $\alpha=0$ from the data we simulate at $\alpha\neq 0$

Interlude: On "Distinguishability"

- \Rightarrow We want to distinguish models A and B using the n (counting) signatures S_i
- Define a measure in signature space analogous to a chi-squared variable

$$(\Delta S_{AB})^2 = \frac{1}{n} \sum_{i} \left[\frac{S_i^A - S_i^B}{\delta S_i^{AB}} \right]^2$$

• Convert to effective cross-sections via $\bar{\sigma}_i = S_i/L$ and assuming errors are purely statistical (\sqrt{N})

$$(\Delta S_{AB})^2 = \frac{1}{n} \sum_{i} \left[\frac{\bar{\sigma}_i^A - \bar{\sigma}_i^B}{\sqrt{\bar{\sigma}_i^A / L_A + \bar{\sigma}_i^B / L_B}} \right]^2$$

ullet We always include the Standard Model background so that $ar{\sigma}_i=ar{\sigma}_i^{ ext{SUSY}}+ar{\sigma}^{ ext{SM}}$

Interlude: On "Distinguishability"

- \Rightarrow We want to distinguish models A and B using the n (counting) signatures S_i
- Define a measure in signature space analogous to a chi-squared variable

$$(\Delta S_{AB})^2 = \frac{1}{n} \sum_{i} \left[\frac{S_i^A - S_i^B}{\delta S_i^{AB}} \right]^2$$

• Convert to effective cross-sections via $\bar{\sigma}_i = S_i/L$ and assuming errors are purely statistical (\sqrt{N})

$$(\Delta S_{AB})^2 = \frac{1}{n} \sum_{i} \left[\frac{\bar{\sigma}_i^A - \bar{\sigma}_i^B}{\sqrt{\bar{\sigma}_i^A / L_A + \bar{\sigma}_i^B / L_B}} \right]^2$$

- We always include the Standard Model background so that $ar{\sigma}_i = ar{\sigma}_i^{ ext{SUSY}} + ar{\sigma}^{ ext{SM}}$
- So how big should $(\Delta S_{AB})^2$ be to say models A and B are distinguished from one another?
- LHC Inverse criterion: this number needs to be at *least* as big as the value induced by quantum fluctuations
 Arkani-Hamed et al., JHEP 0608 (2006) 070

- Effect of fluctuations estimated by comparing the same single model to itself many times and computing $(\Delta S_{AA})^2\big|_{95}$
- But this really depends on the model point and (especially) the signature list you choose to consider

- Effect of fluctuations estimated by comparing the same single model to itself many times and computing $(\Delta S_{AA})^2\big|_{95}$
- But this really depends on the model point and (especially) the signature list you choose to consider
- We can obtain an analytic answer valid for any model pair and any signature list provided
 - Fluctuations for each signature are assumed to be uncorrelated
 - \star We assume that our extracted $\bar{\sigma}_i$ are very close to the true cross-section values σ_i
 - We assume assume the count rates form normal distributions
- Under these assumptions $(\Delta S_{AB})^2$ is a randomly-distributed variable with a probability distribution of

$$P(\Delta S^2) = n \, \chi_{n,\lambda}^2(n\Delta S^2)$$

where $\chi^2_{n,\lambda}$ is the non-central chi-squared distribution for n degrees of freedom

- $\Rightarrow (\Delta S_{AB})^2$ distributed according to a non-central chi-square distribution

$$\lambda = \sum_{i} \frac{(\sigma_i^A - \sigma_i^B)^2}{\sigma_i^A / L_A + \sigma_i^B / L_B}$$

- Taking $\lambda = 0$ gives distribution for $(\Delta S_{AA})^2$
- Can now solve analytically for $(\Delta S_{AA})^2\big|_p \equiv \gamma_n(p)$ for any confidence level p as a function of the number of signatures n
- Having $(\Delta S_{AB})^2 > (\Delta S_{AA})^2\big|_{95}$ may be thought of as a *necessary* condition, but it is not *sufficient* to distinguish models A and B
- \Rightarrow For two models that truly are different we expect $\lambda \neq 0$
- \Rightarrow We want to quantify the probability that two truly distinct models undergo a fluctuation such that their measured $(\Delta S_{AB})^2$ is a very low value

Our Distinguishability Criterion

 \Rightarrow Want the probability for $(\Delta S_{AB})^2$ to fluctuate below $\gamma_n(p)$ to be less than 5%

$$P = \int_{\gamma_n(p)}^{\infty} n \, \chi_{n,\lambda}^2(n\Delta S_{AB}^2) \, d(\Delta S_{AB}^2) = \int_{n\gamma_n(p)}^{\infty} \chi_{n,\lambda}^2(y) \, dy \ge 0.95$$

- Value of this integral decreases monotonically as λ increases
- When P=0.95 we have found the minimum value $\lambda_{\min}(n)$ for the non-centrality parameter

Converting λ_{\min} to Signatures

- Any combination of n-parameters yielding $\lambda > \lambda_{\min}(n)$ will be effective in demonstrating that the two models are indeed distinct, 95% of the time, with a confidence level of 95%
- The value of λ is proportional to integrated luminosity

$$L_{\min} = \frac{\lambda_{\min}(n)}{R_{AB}} \quad \text{with} \quad R_{AB} = \sum_{i} (R_{AB})_i = \sum_{i} \frac{(\sigma_i^A - \sigma_i^B)^2}{\sigma_i^A + \sigma_i^B}$$

- \Rightarrow All the physics of the specific signature list is contained in R_{AB} !
- This just says given any signature list there is always some minimal luminosity that will distinguish the models
- Now the goal is clear: choose your signature list so as to maximize R_{AB} , with as few signatures as possible so as to minimize $\lambda_{\min}(n)$

Choosing an Optimal Signature List

- Given a model pair A and B compute the absolute quantity $(R_{AB})_i$ for all of the possible signatures you can imagine
- Now order them from highest R_i value (smallest L_{\min}) to smallest R_i value (largest L_{\min}) what fraction of the list should you employ?

Choosing an Optimal Signature List

- Given a model pair A and B compute the absolute quantity $(R_{AB})_i$ for all of the possible signatures you can imagine
- Now order them from highest R_i value (smallest L_{\min}) to smallest R_i value (largest L_{\min}) what fraction of the list should you employ?
- No cheating! Can't use your best signature N times... (correlations)
- Kitchen sink method is not ideal!
 - \Rightarrow Take a big hit since $\lambda(n)$ eventually grows faster than $\sum_i R_i$
- For any particular pair of models you can optimize this choice
- But once you average over a large ensemble of models the list will now only be (at best) close to optimal for any model

Simulation Methodology: Details I

- ⇒ We created hundreds of model lines by choosing random "base models" and constructing alpha-lines based off them
- Each line: $-0.5 \le \alpha \le 1.0$ for the parameter α in steps of $\Delta \alpha = 0.05$
- A single SM sample was generated, including 5 fb $^{-1}$ of top, bottom, dijets and gauge boson production (both single and double production)
 - ⇒ This sample was suitably weighted to be included with each of our "signal" samples
- For each point along the model-line 100,000 events PYTHIA + PGS4 with the level 1 trigger only
 - \Rightarrow Typically this is about 5 fb⁻¹ of signal

Simulation Methodology: Details II

Object	Minimum p_T	Minimum $ \eta $
Photon	20 GeV	2.0
Electron	20 GeV	2.0
Muon	20 GeV	2.0
Tau	20 GeV	2.4
Jet	50 GeV	3.0

Initial object-level cuts to keep an object in the event record

- ⇒ After object-level cuts we impose event-level cuts
- $E_T > 150 \text{ GeV}$
- Transverse sphericity $S_T > 0.1$
- $H_T = E_T + \sum_{\text{Jets}} p_T^{\text{jet}} > 600 \text{ GeV}$ (400 GeV for events with 2 or more leptons)
- ⇒ Narrowed our ultimate lists down from an initial set of 128 observables
- ⇒ All histograms were integrated to produce a count

Signature Lists A & B

- List A is the straw-man: most inclusive possible signature
- Recall: $(R_{AB})_i$ has units of cross-section goal is to minimize L_{\min}

	Description	Min Value	Max Value
1	$M_{ m eff}^{ m any}$ = E_T + $\sum_{ m all} p_T^{ m all}$ [All events]	1250 GeV	End

Signature "List" A

- List A is the straw-man: most inclusive possible signature
- Recall: $(R_{AB})_i$ has units of cross-section goal is to minimize L_{\min}

	Description	Min Value	Max Value
1	$M_{ m eff}^{ m any}$ = E_T + $\sum_{ m all} p_T^{ m all}$ [All events]	1250 GeV	End

Signature "List" A

- List B is the largest possible (effective) list that has 10% or less correlation between signatures
- Partitioning of data designed to minimize correlations

	Description	Min Value	Max Value
1	$M_{ m eff}^{ m jets}$ [0 leptons, ≥ 5 jets]	1100 GeV	End
2	$M_{ ext{eff}}^{ ext{any}}$ [0 leptons, ≤ 4 jets]	1450 GeV	End
3	$M_{ ext{eff}}^{ ext{any}}$ [≥ 1 leptons, ≤ 4 jets]	1550 GeV	End
4	$p_T(Hardest Lepton) [\geq 1, \geq 5 jets]$	150 GeV	End
5	$M_{ m inv}^{ m jets}$ [0 leptons, ≤ 4 jets]	0 GeV	850 GeV

Signature "List" B

• Here we allow as much as 30% correlation between any two signatures

	Description	Min Value	Max Value			
Counting Signatures						
1	N_{ℓ} [≥ 1 leptons, ≤ 4 jets]					
2	$N_{\ell^{+}\ell^{-}} [M_{\rm inv}^{\ell^{+}\ell^{-}} = M_Z \pm 5 \text{ GeV}]$					
3	N_B [≥ 2 B-jets]					
	[0 leptons, ≤ 4 je	ts]				
4	$M_{ m eff}^{ m any}$	1000 GeV	End			
5	$M_{ m inv}^{ m jets}$	750 GeV	End			
6	$ ot\!\!\!E_T$	500 GeV	End			
	[0 leptons, ≥ 5 je	ts]				
7	$M_{ m eff}^{ m any}$	1250 GeV	3500 GeV			
8	$r_{ m jet}$ [3 jets $>$ 200 GeV]	0.25	1.0			
9	p_T (4th Hardest Jet)	125 GeV	End			
10	$ ot\!\!E_T/M_{ ext{eff}}^{ ext{any}}$	0.0	0.25			
	[≥ 1 leptons, ≥ 5]	ets]				
11	$ \not\!E_T/M_{ m eff}^{ m any}$	0.0	0.25			
12	p_T (Hardest Lepton)	150 GeV	End			
13	p_T (4th Hardest Jet)	125 GeV	End			
14	$ \not\!E_T$ + $M_{ m eff}^{ m jets}$	1250 GeV	End			

Signature "List" C

Signature List C

	Description		Max Value		
Counting Signatures					
1	N_{ℓ} [≥ 1 leptons, ≤ 4 jets]				
2	$N_{\ell^{+}\ell^{-}} [M_{\rm inv}^{\ell^{+}\ell^{-}} = M_Z \pm 5 \text{ GeV}]$				
3	N_B [≥ 2 B-jets]				
	[0 leptons, ≤ 4 jets	s]			
4	$M_{ m eff}^{ m any}$	1000 GeV	End		
5	$M_{ m eff}^{ m Meff} \ M_{ m inv}^{ m jets}$	750 GeV	End		
6	$ ot\!\!\!E_T^{mv}$	500 GeV	End		
	[0 leptons, ≥ 5 jets	s]			
7	$M_{ m eff}^{ m any}$	1250 GeV	3500 GeV		
8	$r_{ m iet}$ [3 jets $>$ 200 GeV]	0.25	1.0		
9	${p}_T^{}$ (4th Hardest Jet)	125 GeV	End		
10	$ ot\!\!E_T/M_{ ext{eff}}^{ ext{any}}$	0.0	0.25		
	[≥ 1 leptons, ≥ 5 je	ets]			
11	$E_T/M_{ m eff}^{ m any}$	0.0	0.25		
12	p_T (Hardest Lepton)	150 GeV	End		
13	p_T (4th Hardest Jet)	125 GeV	End		
14	$ \! \! E_T + M_{ m eff}^{ m jets} $	1250 GeV	End		

Signature "List" C

- First appearance of true counting signatures
- These signatures only occasionally helpful (sensitive to presence of spoiler modes for trilpeton signature)

Signature List C

	Description	Min Value	Max Value		
Counting Signatures					
1	$N_\ell [\geq 1 \text{ leptons}, \leq 4 \text{ jets}]$				
2	$N_{\ell^{+}\ell^{-}} [M_{\rm inv}^{\ell^{+}\ell^{-}} = M_Z \pm 5 \text{ GeV}]$				
3	N_B [≥ 2 B-jets]				
	[0 leptons, ≤ 4 jets	s]			
4	$M_{ m eff}^{ m any}$	1000 GeV	End		
5	$M_{ m inv}^{ m jets}$	750 GeV	End		
6	$ ot\!\!\!E_T^{m_v}$	500 GeV	End		
	[0 leptons, ≥ 5 jets	s]			
7	$M_{ m eff}^{ m any}$	1250 GeV	3500 GeV		
8	$r_{ m iet}$ [3 jets $>$ 200 GeV]	0.25	1.0		
9	${p}_T$ (4th Hardest Jet)	125 GeV	End		
10	$ ot\!\!E_T/M_{ ext{eff}}^{ ext{any}}$	0.0	0.25		
	[≥ 1 leptons, ≥ 5 je	ets]			
11	$E_T/M_{ m eff}^{ m any}$	0.0	0.25		
12	p_T (Hardest Lepton)	150 GeV	End		
13	p_T (4th Hardest Jet)	125 GeV	End		
14	$ \not\!\!E_T$ + $M_{ ext{eff}}^{ ext{jets}}$	1250 GeV	End		

Signature "List" C

- Some signatures designed to detect changes in the softness of decay produces in cascade decays
- Particularly effective is the ratio $r_{
 m jet} \equiv rac{p_T^{
 m jet3} + p_T^{
 m jet4}}{p_T^{
 m jet1} + p_T^{
 m jet2}}$

Signature List C

	Description	Min Value	Max Value			
Counting Signatures						
1	N_{ℓ} [≥ 1 leptons, ≤ 4 jets]					
2	$N_{\ell^{+}\ell^{-}} [M_{\rm inv}^{\ell^{+}\ell^{-}} = M_Z \pm 5 \text{ GeV}]$					
3	N_B [≥ 2 B-jets]					
	[0 leptons, ≤ 4 jets	s]				
4	$M_{ m eff}^{ m any}$	1000 GeV	End			
5	$M_{ m eff}^{ m Weff} \ M_{ m inv}^{ m jets}$	750 GeV	End			
6	$ ot\!\!E_T$	500 GeV	End			
	[0 leptons, ≥ 5 jets	s]				
7	$M_{ m eff}^{ m any}$	1250 GeV	3500 GeV			
8	$r_{ m jet}$ [3 jets $>$ 200 GeV]	0.25	1.0			
9	$\overset{\circ}{p_T}$ (4th Hardest Jet)	125 GeV	End			
10	$ ot\!\!E_T/M_{ ext{eff}}^{ ext{any}}$	0.0	0.25			
	[≥ 1 leptons, ≥ 5 je	ets]				
11	$E_T/M_{ m eff}^{ m any}$	0.0	0.25			
12	p_T (Hardest Lepton)	150 GeV	End			
13	p_T (4th Hardest Jet)	125 GeV	End			
14	$ \! \! E_T + M_{ m eff}^{ m jets} $	1250 GeV	End			

Signature "List" C

 Some items are normalized – but generally normalization not helpful in reducing correlations (may be very helpful in reducing systematic uncertainties)

Model A

M.K. Gaillard and BDN, Int. J. Mod. Phys. A22 (2007) 1451

- Based on heterotic string theory
- Dilaton stabilized with non-perturbative corrections to the Kähler potential
- \star Stabilization mechanism causes $M_g \sim 30 M_u$
- Scalar masses generally universal
- \star Absolute prediction: $\alpha \gtrsim 0.12$

Model B

Choi, Falkowsi, Nilles, Olechowski, NPB 718 (2005) 113 Falkowski, Lebedev, Mambrini, JHEP 0511 (2005) 034

- Based on Type II string theory
- Includes internal fluxes for moduli stabilization
- \star Large warping in compact space produces $M_g \sim 30 M_u$
- AMSB plays a large role in all soft terms
- \star Basic model predicts $\alpha \simeq 1$

Point	А	В
α	0.3	1.0
$\tan \beta$	10	10
$\Lambda_{ m mir}$	2.0×10^{14}	1.5×10^9
M_1	198.7	851.6
M_2	172.1	553.3
M_3	154.6	339.1
A_t	193.0	1309
A_b	205.3	1084
$A_{ au}$	188.4	1248
$m_{Q_3}^2$	$(1507)^2$	$(430.9)^2$
$\begin{bmatrix} m_{Q_3}^\tau \\ m_{U_3}^2 \end{bmatrix}$	$(1504)^2$	$(610.3)^2$
$m_{D_2}^2$	$(1505)^2$	$(352.2)^2$
$m_{L_0}^2$	$(1503)^2$	$(381.6)^2$
$m_{E_3}^{23}$ $m_{Q_{1,2}}^{2}$	$(1502)^2$	$(407.9)^2$
$m_{Q_{1,2}}^2$	$(1508)^2$	$(208.4)^2$
$m_{U_1,0}^2$	$(1506)^2$	$(302.7)^2$
m_{D_1}	$(1505)^2$	$(347.0)^2$
$ m_{L_{1}} $	$(1503)^2$	$(379.8)^2$
$m_{E_{1}}$	$(1502)^2$	$(404.5)^2$
$m_{H_{u_i}}^2$	$(1500)^2$	$(752.0)^2$
$\begin{bmatrix} m_{Hu}^2 \\ m_{H_d}^2 \end{bmatrix}$	$(1503)^2$	$(388.7)^2$

All values in GeV

Parameter	Point A	Point B	Parameter	Point A	Point B
$m_{\widetilde{N}_1}$	85.5	338.7	$m_{ ilde{t}_1}$	844.7	379.9
$\mid m_{\widetilde{N}_2} \mid$	147.9	440.2	$\mid m_{ ilde{t}_2} \mid$	1232	739.1
$\mid m_{\widetilde{N}_3} \mid$	485.3	622.8	$\mid m_{ ilde{c}_L}, m_{ ilde{u}_L} \mid$	1518	811.7
$\mid m_{\widetilde{N}_4} \mid$	494.0	634.3	$\mid m_{ ilde{c}_R}$, $m_{ ilde{u}_R}$	1520	793.3
$m_{\widetilde{C}_1^{\pm}}$	147.7	440.1	$m_{ ilde{b}_1}$	1224	676.8
$m_{\widetilde{C}_2^{\pm}}$	494.9	635.0	$\mid m_{ ilde{b}_2} \mid$	1507	782.4
$\mid m_{ ilde{g}} \mid$	510.0	818.0	$\mid m_{ ilde{s}_L}$, $m_{ ilde{d}_L}$	1520	815.4
$\mid \mu \mid$	476.1	625.2	$\mid m_{ ilde{s}_R}, m_{ ilde{d}_R} \mid$	1520	793.5
m_h	115.2	119.5	$m_{ ilde{ au}_1}$	1487	500.4
$\mid m_A$	1557	807.4	$\mid m_{ ilde{ au}_2} \mid$	1495	540.4
$\mid m_{H^0} \mid$	1557	8.608	$\mid m_{ ilde{\mu}_L}, m_{ ilde{e}_L} \mid$	1500	545.1
$m_{H^{\pm}}$	1559	811.1	$m_{ ilde{\mu}_R},m_{ ilde{e}_R}$	1501	514.6

Low Energy Physical Masses for Benchmark Points

⇒ We will test the ability of our list to distinguish points along model lines for 500 randomly-generated base models

 \Rightarrow Top plot compares $\alpha=0$ to $\alpha=0.1$; bottom plot compares $\alpha=0$ to $\alpha=0.3$

- LHC v2.0 will be about synthesis
- Rather than fit to models can we fit to characteristics?
- Yes, at least in this (artificial) first step
- Gaugino mass non-universality at \gtrsim 20% can be measured within 1-2 years at the LHC
- Bigger is not necessarily better when using LHC observations!
- Is there a limit to how much useful information we can extract from the LHC?